Onyinye Mkpola UKPAI, Chukwuebuka Mathias EKEDO


This study was conducted in order to evaluate the insecticide susceptibility status of Aedes aegypti in Umudike, Abia State, Nigeria. Larval and pupal stages of the mosquitoes were collected from different points within Umudike, and reared to adulthood in the laboratory. The adults that emerged were tested on 4 % DDT (organochlorines), 0.1 % bendiocarb (carbamates), 0.25 % primiphos-methyl (organophosphates) and 0.05 % deltamethrin (pyrethroids) procured from National Arbovirus and Vector Research Institute, Enugu. Twenty sugar fed female Aedes aegypti mosquitoes aged 3 – 5 days were used for the bioassay which was replicated four times with two control. Knockdown was recorded at five minutes, and then 10 minutes interval for 1 hour and then maintained for 24 hours post-exposure on 7 % sugar solution, after which a final mortality was recorded. The Knockdown times (KDT50 and KDT90) were determined by Probit analysis.  Aedes aegypti was susceptible to all the insecticides but DDT, with 24-hour post exposure percentage mortalities of 62.85, 100, 97.50 and 93.75 in DDT, bendiocarb, primiphos-methyl and deltamethrin, respectively. It is necessary that the mechanism behind this resistance displayed by Ae. aegypti mosquitoes in Umudike to DDT be investigated. Routine surveillance of insecticide susceptibility/resistance in wild mosquito population is also advocated in line with integrated vector control strategy in Umudike.


Aedes aegypti, Insecticide, DDT, Bendiocarb, Primiphos-methyl, Deltamethrin, Knockdown times, Susceptibility, Umudike

Full Text:



ABDALMAGID, M. A. and ALHUSEIN, S. H., 2008. Entomological investigation of Aedes aegypti in Kassala and Elgadarief States, Sudan. Sudanese Journal of Public Health, 3(2): 77 – 80.

ABBOTT, W. S. (1987). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association, 3: 302 – 303.

ANNADURAI, K., DANASEKARAN, R., MANI, G. and RAMASAMY, J. (2015). Mosquito menace: A major threat in modern era. Medical Journal of Dr. DY Patil University, 8(3): 414 – 415.

AWOLOLA, T. S., BROOKE, B. D., HUNT, R. H. and COETZE, M. (2002). Resistance of the malaria vector Anopheles gambiae ss to pyrethroid insecticides in south-western Nigeria. Annals of Tropical Medicine and Parasitology, 96(8): 849 – 852.

AWOLOLA, T. S., BROOKE, B. D., KOEKEMOER, L. L. and COETZEE, M. (2003). Absence of the kdr mutation in the molecular ‘M’form suggests different pyrethroid resistance mechanisms in the malaria vector mosquito Anopheles gambiae ss. Tropical Medicine and International Health, 8(5): 420 – 422.

AWOLOLA, T. S., ODUOLA, A. O., OYEWOLE, I. O., OBANSA, J. B., AMAJOH, C. N., KOEKEMOER, L. L. and COETZEE, M. (2007). Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae ss in southwestern Nigeria. Journal of Vector Borne Diseases, 44(3): 181.

AWOLOLA, T. S., OYEWOLE, I. O., AMAJOH, C. N., IDOWU, E. T., AJAYI, M. B., ODUOLA, A., MANAFA, O. U., IBRAHIM, K., KOEKEMOER, L. L. and COETZEE, M. (2005). Distribution of the molecular forms of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Tropica, 95(3): 204 – 209.

BRAKS, M. A., HONÓRIO, N. A., LOURENÇO-DE-OLIVEIRA, R., JULIANO, S. A. and LOUNIBOS, L. P. (2003). Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. Journal of Medical Entomology, 40(6): 785 – 794.

BRENGUES, C., HAWKES, N. J., CHANDRE, F., MCCARROLL, L., DUCHON, S., GUILLET, P., MANGUIN, S., MORGAN, J. C. and HEMINGWAY, J. (2003). Pyrethroid and DDT cross‐resistance in Aedes aegypti is correlated with novel mutations in the voltage‐gated sodium channel gene. Medical and Veterinary Entomology, 17(1): 87 – 94.

CANYON, D. V. and HII, J. L. K. (1999). Insecticide susceptibility status of Aedes aegypti (Diptera: Culicidae) from Townsville. Australian Journal of Entomology, 38(1): 40 – 43.

DJOUAKA, R. F., BAKARE, A. A., COULIBALY, O. N., AKOGBETO, M. C., RANSON, H., HEMINGWAY, J. and STRODE, C. (2008). Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid-resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics, 9(1): 538 – 544.

GILLIES, M. T. and COETZEE, M. (1987). A supplement to the anopheline of Africa south of the sahara (afrotropical region). Publication of the South African Institute of Medical Research, 55: 1 – 143.

HEMINGWAY, J. and RANSON, H. (2000). Insecticide resistance in insect vectors of human disease. Annual Review of Entomology, 45(1): 371 – 391.

IBRAHIM, K. T., POPOOLA, K. O. and ADEWUYI, O. R. (2013). Susceptibility of Anopheles gambiae sensu lato (Diptera: Culicidae) to permethrin, deltamethrin and bendiocarb in Ibadan City, Southwest Nigeria. Current Research Journal of Biological Sciences, 5(2): 42 – 48.

IBRAHIM, S. S., MANU, Y. A., TUKUR, Z., IRVING, H. and WONDJI, C. S. (2014). High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria. BMC Infectious Diseases, 14(1): 441 – 448.

JIRAKANJANAKIT, N., RONGNOPARUT, P., SAENGTHARATIP, S., CHAREONVIRIYA-PHAP, T., DUCHON, S., BELLEC, C. and YOKSAN, S. (2007). Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003–2005. Journal of Economic Entomology, 100(2): 545 – 550.

KILLEEN, G. F., FILLINGER, U., KICHE, I., GOUAGNA, L. C. and KNOLS, B. G. (2002). Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa. The Lancet Infectious Diseases, 2(10): 618 – 627.

KRISTAN, M., FLEISCHMANN, H., DELLA TORRE, A., STICH, A. and CURTIS, C. F. (2003). Pyrethroid resistance /susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae ss malaria vectors in Nigeria and Ghana. Medical and Veterinary Entomology, 17(3): 326 – 332.

MCALLISTER, J. C., GODSEY, M. S. and SCOTT, M. L. (2012). Pyrethroid resistance in Aedes aegypti and Aedes albopictus from Port‐au‐Prince, Haiti. Journal of Vector Ecology, 37(2): 325 – 332.

MITTAL, P. K. (2003). Prospects of using herbal products in the control of mosquito vectors. Indian Council of Medical Research Bulletin, 33: 1 – 10.

NDAMS, I. S., LAILA, K. M. and TUKUR, Z. (2006). Susceptibility of some species of mosquitoes to permethrin pyrethroids in Zaria, Nigeria. Science World Journal, 1(1): 15 – 19.

NRCRI (2003). Daily Weather Report, Meteorological Station. National Root Crops Research Institute (NRCRI), Umudike, Umuahia.

OCAMPO, C. B., SALAZAR-TERREROS, M. J., MINA, N.J., MCALLISTER, J. and BROGDON, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1): 37 – 44.

ODUOLA, A. O., IDOWU, E. T., OYEBOLA, M. K., ADEOGUN, A. O., OLOJEDE, J. B., OTUBANJO, O. A. and AWOLOLA, T. S. (2012). Evidence of carbamate resistance in urban populations of Anopheles gambiae ss mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria. Parasites and Vectors, 5(1): 116.

ODUOLA, A. O., OLOJEDE, J. B., ASHIEGBU, C. O., ADEOGUN, A. O., OTUBANJO, O. A. and AWOLOLA, T. S. (2010). High level of DDT resistance in the malaria mosquito: Anopheles gambiae sl from rural, semi urban and urban communities in Nigeria. Journal of Rural and Tropical Public Health, 9: 114 – 120.

OKORIE, P. N., MCKENZIE, F. E., ADEMOWO, O. G., BOCKARIE, M. and KELLY-HOPE, L. (2011). Nigeria Anopheles vector database: an overview of 100 years' research. PLoS One, 6(12): p.e28347.

OLAYEMI, I. K., ANDE, A. T., CHITA, S., IBEMESI, G., AYANWALE, V. A. and ODEYEMI, O. M. (2011). Insecticide susceptibility profile of the principal malaria vector, Anopheles gambiae sl (Diptera: Culicidae), in north-central Nigeria. Journal of Vector Borne Diseases, 48(2): 109.

RATHOR, H. R. (1996). The role of vectors in emerging and re-emerging diseases in the eastern Mediterranean region. Eastern Mediterranean Health Journal, 2(1): 61 – 67.

SOMBOON, P., PRAPANTHADARA, L. A. and SUWONKERD, W. (2003). Insecticide susceptibility tests of Anopheles minimus sl, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 34(1): 87 – 93.

STATSDIRECT (2013). StatsDirect Statistical Software. Version 2.8.0(10/27/2013). No. 11 Gresham Way Cheshire, M33 3UY, United Kingdom.

SATHANTRIPHOP, S., PAEPORN, P. and SUPAPHATHOM, K. (2006). Detection of insecticides resistance status in Culex quinquefasciatus and Aedes aegypti to four major groups of insecticides. Tropical Biomed, 23(1): 97 – 101.

UMAR, A., KABIR, B. G. J., AMAJOH, C. N., INYAMA, P. U., ORDU, D. A., BARDE, A. A., MISAU, A. A., SAMBO, M. L., BABUGA, U., KOBI, M. and JABBDO, M. A. (2014). Susceptibility test of female anopheles mosquitoes to ten insecticides for indoor residual spraying (IRS) baseline data collection in North-eastern Nigeria. Journal of Entomology and Nematology, 6(7): 98 – 103.

WHO (1982). Manual on Environmental Management for Mosquito Control with special Emphasis on Malaria Vectors. World Health Organization (WHO) Offset Publication, 66:140 – 148.

WHO (1998). Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bio-Efficacy and Persistence of Insecticides in Treated Surfaces. Report of the WHO Informal Consultation. WHO/CDS/CPC/MAL/98.12.World Health Organization, Geneva, Switzerland.

WHO (2013). Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. WHO, Geneva.

WHO, 2005. Guidelines for Laboratory and Field Testing of Long-Lasting Insecticidal Mosquito Nets. World Health Organization, Geneva, Switzerland.

WHO (2006). World Health Organization Pesticide Evaluation Scheme (WHOPES). World Health Organization, Geneva, Switzerland.


  • There are currently no refbacks.

A Publication of Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria.